Parametric Instability in Long Optical Cavities and Suppression by Dynamic Transverse Mode Frequency Modulation

نویسندگان

  • Chunnong Zhao
  • Li Ju
  • Qi Fang
  • Carl Blair
  • Jiayi Qin
  • David Blair
  • Jerome Degallaix
  • Hiroaki Yamamoto
چکیده

Three mode parametric instability has been predicted in Advanced gravitational wave detectors. Here we present the first observation of this phenomenon in a large scale suspended optical cavity designed to be comparable to those of advanced gravitational wave detectors. Our results show that previous modelling assumptions that transverse optical modes are stable in frequency except for frequency drifts on a thermal deformation time scale is unlikely to be valid for suspended mass optical cavities. We demonstrate that mirror figure errors cause a dependence of transverse mode offset frequency on spot position. Combined with low frequency residual motion of suspended mirrors, this leads to transverse mode frequency modulation which suppresses the effective parametric gain. We show that this gain suppression mechanism can be enhanced by laser spot dithering or fast thermal modulation. Using Advanced LIGO test mass data and thermal modelling we show that gain suppression factors of 10-20 could be achieved for individual modes, sufficient to greatly ameliorate the parametric instability problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical calculations of diffraction losses in advanced interferometric gravitational wave detectors.

Knowledge of the diffraction losses in higher-order modes of large optical cavities is essential for predicting three-mode parametric photon-phonon scattering, which can lead to mechanical instabilities in long-baseline gravitational wave detectors. We explore different numerical methods in order to determine the diffraction losses of the higher-order optical modes. Diffraction losses not only ...

متن کامل

Investigation of Scalar Modulation Instability in the Presence of Raman Scattering in Photonic Crystal Fibers

In this paper, by including Raman scattering in the coupled-mode equations, the scalar modulation instability in photonic crystal fibers is investigated. The evolution of the pump, Stokes and anti-Stokes waves along the fiber as well as the conversion efficiency for two cases, with and without Raman effect, are studied. The effect of anti-Stokes seed and the pump depletion on the evolution of S...

متن کامل

Einstein-Podolsky-Rosen correlations in second-harmonic generation

A quantum model for singly resonant second-harmonic generation in a cavity with transverse degrees of freedom is analyzed. An instability threshold for pattern formation exists in this system. Below threshold, a strong modulation of the noise is demonstrated in the transverse structure of the far field. The performed analysis encompasses both oneand two-point correlation functions. The noise in...

متن کامل

The Response of Two-Degree of Freedom Self-Sustained Systems with Quadratic Nonlinearities to a Parametric Excitation (RESEARCH NOTE)

In this study the interaction between self-excited and paramet rically excited oscillations in two-degree-of-freedom systems with quadratic nonlinearities is investigated. The fundamental parametric resonance of the first mode and 3:1 internal resonance is considered, followed by 1:2 internal and parametric resonances of the second mode. The method of multiple time scales is applied to derive f...

متن کامل

Effects of Optical Feedback on Static and Dynamic Characteristics of Vertical-Cavity Surface-Emitting Lasers

We present a numerical study of the effects of optical feedback on the static and dynamic characteristics of verticalcavity surface-emitting lasers (VCSEL’s) under both single-mode and two-mode operations. Our model includes transverse effects such as carrier diffusion and spatial hole burning (SHB) and is therefore capable of including gain-saturation-induced coupling among transverse modes. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015